
wcm.io Context-Aware Configuration

Last Updated: December 2021

DATM-55

Technical Training – wcm.io

https://training.wcm.io/caconfig/©2017-2021 diva-e

https://training.wcm.io/caconfig/

What is Context-Aware Configuration

2

Short overview

Configuration example

3

/content

/tenant1

/region1

/site1

/language1

/language2

/site2

/language1

/tenant2

Tenant-specific configuration

Region-specific configuration

Site-specific configuration

Context-aware = different configuration
for different subtrees in resource hierarchy

Context-Aware Configuration

4

• Context-aware configurations are configurations that are
related to a content resource or a resource tree,
e.g. a web site or a tenant site.

• An application may need different configuration for different sites, regions
and tenants = different contexts.

• Some parameters may be shared, so inheritance for nested contexts and
from global fallback values is supported as well.

See also:

• Apache Sling documentation: Apache Sling Context-Aware Configuration

• diva-e Training: DATM-13 Sling Context-Aware Configuration

https://sling.apache.org/documentation/bundles/context-aware-configuration/context-aware-configuration.html

Configuration solutions in AEM

5

Configuration Solutions in AEM

6

Solution Organization Platform
System-level
configuration

Context-aware
configuration

OSGi configuration OSGi Sling, AEM ✓

Cloud Service Configurations
(CSC)

Adobe
AEM
(since 5.5) ✓

AEM ConfMgr Adobe
AEM
(since 6.1) ✓

wcm.io Configuration 0.x wcm.io
AEM
(6.0 and up) ✓

Apache Sling
Context-Aware Configuration

Apache
Sling, AEM
(6.1 and up) ✓

• For system-level always OSGi is the standard solution

• For context-aware configuration different solutions emerged over the time

OSGi configuration

7

• Editor GUI

• Flexible deployment: filesystem, repository, web console,
factory configurations

• “Self-describing" with metadata

• Good API support (esp. in OSGi R6)

• Runmode-specific configuration

AEM ConfMgr

8

• Simple API

• Flexible inheritance support

• No Editor GUI

• Lacks documentation

• Used mainly by (some parts of) AEM itself

• Storage: /conf

• Since AEM 6.3 replaced by Apache Sling Context-Aware Configuration

– AEM ConfMgr API still exists, but is deprecated and delegates to the Sling Context-Aware
Configuration API internally

http://www.nateyolles.com/blog/2016/03/aem-slash-conf-and-confmgr

http://www.nateyolles.com/blog/2016/03/aem-slash-conf-and-confmgr

Cloud Service Configurations (CSC)

9

• Edit configuration via AEM
templates

• Primary target: Adobe
Marketing Cloud integrations

• Custom configurations
possible as well

• Storage:
/etc/cloudservices

• Initially created only to configure Adobe Marketing Cloud Solutions in
AEM (hence the name)

• But can by used for application-specific purposes as well

https://experienceleague.adobe.com/docs/experience-manager-65/developing/extending-
aem/extending-cloud-services/extending-cloud-config.html?lang=en

https://experienceleague.adobe.com/docs/experience-manager-65/developing/extending-aem/extending-cloud-services/extending-cloud-config.html?lang=en

Configuration solution comparison

10

Feature
OSGi

Config
AEM

ConfMgr
AEM
CSC

Sling
CAConfig

Global / fallback configuration ✓ ✓ ✓

Hierarchy-based inheritance ✓ ✓

Property inheritance merging ✓

Provide properties and data types ✓ ✓ ✓

Additional metadata for editors ✓ ✓ ✓

Define Configuration metadata via code ✓ ✓

Key/value pairs (ValueMap) ✓ ✓ ✓ ✓

Resource-based access ✓ ✓ ✓

Map to Java class ✓ ✓

Configuration collections ✓ ✓ ✓

Editor GUI ✓ ✓ ✓

Recommendation

11

• Use OSGi configuration for system-level configuration

• Use Apache Sling Context-Aware Configuration for the other configuration
purposes

– with the help of wcm.io Context-Aware Configuration Extensions and Editor

• Do no longer use AEM ConfMgr or wcm.io Configuration 0.x

• Use Cloud Service Configurations only for “Marketing-Cloud-like”
integration use cases

Context-Aware Configuration in AEM

12

Sling Context-Aware Configuration in AEM

13

• AEM 6.3 is the first version that ships with Sling Context-Aware Configuration

– But you should deploy the latest bundles
https://wcm.io/caconfig/deploy-configure-caconfig-in-aem.html

– Some additional OSGi configurations are required

• AEM 6.5 and AEMaaCS ship with the latest bundles

https://wcm.io/caconfig/deploy-configure-caconfig-in-aem.html

Out-of-the-box support since AEM 6.3

14

• Supports reading context-aware configuration:

– Storage at /conf

– Using the default content model from Sling Context-Aware Configuration

– Using the content model from AEM ConfMgr
(with configurations wrapped in cq:Page nodes)

• Supports writing context-aware configuration

– Only using the default content model from Sling Context-Aware Configuration

• Implements some subtle additions to the resource inheritance logic to be
backward-compatible with AEM ConfMgr

– Lookup in all parent paths below /conf, even if not explicitly defined by a context
configuration reference or context paths strategy

– Special inheritance decider for mergeList property from AEM ConfMgr

Managing configuration in /conf

15

• All context-aware configuration is stored by default in /conf

• In AEM there is no support in the GUI for editing or replicating context-
aware configuration

– AEM 6.3 introduces a new tool “Configuration Browser”, but this allows only to
create “structure” and not to manipulate the contained configuration. It is mainly
target at template editor-related configuration, and does not have a “publish”
button for replication.

– The “Activate Tree” feature could be use for replication, but it is a bit tricky to use
for context-aware configurations, and normally should not be accessible to
anyone except the system administrator

• So, the only built-in support is:

– Edit configurations in CRX DE Lite

– Creating a package of /conf or a subtree of it and replicate it to the publisher

wcm.io Context-Aware Configuration

16

wcm.io Context-Aware Config Overview

17

wcm.io provides additional context-aware features:

• Configuration Editor

• AEM-specific extensions for context path strategies, persistence and
overriding

Context-Aware Configuration Editor

18

wcm.io

Configuration Editor Features

19

• Manage Context-Aware Configuration by creating an editor page in the
content context

• Manage singleton configuration, configuration collections and nested
configurations

• Display all configuration metadata and default values

• Support all data types and arrays of values

• Control collection and property inheritance and support overridden values

• Allows to define custom widgets for configuration properties like
pathbrowser

• It uses the Sling Context-Aware Management API internally

Placing configuration editor page

20

/content

/mysite

@sling:configRef = "/conf/mysite"

/tools

/config

/conf

/mysite

/sling:configs

/x.y.z.MyConfig

@param1 = "value1"

• The configuration editor is created as AEM page within the context,
using the Configuration Editor template

• But it reads and writes the configuration from /conf

• When multiple contexts are nested an editor page is created for each of them

Configuration editor page
is created here

(anywhere within
context subtree)

Configuration is read from
and written to /conf

(or whatever persistence
strategy is configured)

Configuration overview

21

Context
root path

Display configurations for
which some configuration

data already exists

Enter data for
configurations which

do not yet exist

Singleton configuration

22

Displays all configuration properties with
edit widgets matching it’s data type.

Show description
for property

Edit arrays
of values

Configuration collection

23

Add new
collection item

Remove
collection item

Item name
has to be

unique

Nested configuration

24

Enter editor view for
sub configuration

Shows breadcrumbs
for nested

configuration levels

Resource inheritance

25

Enable resource inheritance
for a configuration collection

(reopen configuration to see inherited children)

This item is inherited.
(break inheritance to copy and edit it

on this configuration level)

Property inheritance

26

Enable property inheritance
(this is also supported for

configuration collection items)

Some properties are
inherited.

(uncheck to overwrite with
a new value on this configuration level)

Configuration override

27

When an override
is configured for

the current
content path the

properties are
read-only.

• You can define custom edit widgets for the configuration properties.

– Currently only one “widgetType” is supported: “pathbrowser”

Custom edit widgets

28

Use custom properties
to configure the

“widgetType” and it’s
properties.

@Property(label = "DAM Path", property = {

"widgetType=pathbrowser",

"pathbrowserRootPath=/content/dam"

})

String damPath();

@Property(label = "Context Path", property = {

"widgetType=pathbrowser",

"pathbrowserRootPathContext=true"

})

String contextPath();

Sets root path
to inner-most
context-past

Open path
browser dialog

Integrate the editor into your application

29

• In most cases you will deploy the configuration editor bundle
io.wcm.caconfig.editor together with your application.

• In this case you have to define your own template definition for it which
controls where editor config pages can created – example:

• Alternatively you can deploy an AEM package with a preconfigured
template: io.wcm.caconfig.editor.package

{

"jcr:primaryType": "cq:Template",

"jcr:title": "My Application Configuration Editor",

"allowedPaths": "^/content/myapp(/.*)?$",

"jcr:content": {

"jcr:primaryType": "cq:PageContent",

"sling:resourceType": "/apps/wcm-io/caconfig/editor/components/page/editor"

}

}

Configuration editor sample application

30

If you want to try out the configuration editor on local AEM instance and test
the different configuration use cases, you can use this sample application:

https://github.com/wcm-io/wcm-io-caconfig/tree/develop/sample-app

Use the script clean_install_deploy_package.sh to deploy the
application and sample content to your AEM instances on port 4502.

https://github.com/wcm-io/wcm-io-caconfig/tree/develop/sample-app

Context-Aware Configuration Extensions

31

wcm.io

Context Path Strategies

32

• The Sling Context-Aware Configuration default implementation requires a
sling:configRef property on the root of each context.

– It’s tedious and error-prone to define all those properties manually if you have a
lot of sites

– It does not enforce a well-ordered structure of site and configuration paths

• wcm.io provides alternative context path strategy implementations that
detect the context roots automatically in a declarative way.

• You can have multiple strategies in place at the same time, separating them
by path patterns or service ranking.

Context Path Strategy: Absolute Parents

33

• A fixed set of “absolute parent” path levels is used to define the context
roots

• Example: Levels 1, 3 mark the following pages as context path roots

|-0-|-1-|-2-|-3-|-4-|

/content

/tenant1

/region1

/site1

/page1

/tenant2

/region2

/site1

/page2

• Additionally you can define context
path whitelist and blacklist regular
expressions to limit the strategy to
certain subtrees of your repository

Level starting with “0”
/content node

Context Path Strategy: Root Templates

34

• Whenever a parent page uses a template matching a list of “root template
paths” it defines the inner-most context root

• Example: Define the “Homepage Template”, min. level 1, max. level 4

• All parent pages (or only those matching the templates) between min and
max level up to a page with this configured template are detected as context
paths.

• Additionally you can define context path whitelist expressions to limit the
strategy to certain subtrees of your repository.

|-0-|-1-|-2-|-3-|-4-|

/content

/tenant1 <Structure Template>

/region1 <Structure Template>

/site1 <Homepage Template>

/page1 <Content Template>

Context Path Strategies: Derive config paths

35

• Both “Absolute Parent” and “Root Template” context path strategies derive
the configuration path from the context path.

• Regular expression groups and group references can be used for this

Example:

contextPathRegex = "^/content(/.+)$"

configPathPatterns = ["/conf$1"]

Context root path = /content/tenant1/region1/site1

Derived configuration path = /conf/tenant1/region1/site1

• You can define multiple configPathPatterns – the paths are used from last to
first for reading configuration, only the last one for writing.

Persistence Strategies

36

• By default Sling Context-Aware Configuration stores configuration in a
hierarchy of nodes below /conf using nt:unstructured node types. This
is simple enough, but it makes it difficult to apply operations like replication
on it in AEM.

• Thus it would be good when configuration can be stored in cq:Page nodes as
it is done by the “AEM ConfMgr” for AEM. AEM ships with such an Persistence
Strategy, but it only supports read access to configuration, no write access.

• wcm.io provides additional persistence strategy implementations.

Persistence Strategy: AEM Page

37

• Stores configurations in cq:Page/jcr:content nodes instead of
nt:unstructured

• Makes it easier to replicate them to publish individually

• Uses similar content model as AEM ConfMgr

• Disabled by default, can be enabled via OSGi configuration

Persistence Strategy: AEM Page

38

Example resource structure for a singleton configuration:

/conf

/mysite

/sling:configs

/x.y.z.SimpleConfig [cq:Page]

/jcr:content [cq:PageContent]

@stringParam = "value1"

@intParam = 123

@boolParam = true

Configuration
reference path

Bucket name

Configuration name

Configuration values

Persistence Strategy: AEM Page

39

Example resource structure for a configuration collection:

/conf

/mysite

/sling:configs

/x.y.z.ListConfig [cq:Page]

/jcr:content [cq:PageContent]

/item1 [cq:Page]

/jcr:content[cq:PageContent]

@stringParam = "value1"

@intParam = 123

@boolParam = true

/item2

/jcr:content[cq:PageContent]

@stringParam = "value2"

@intParam = 456

@boolParam = false

Collection item values

Collection item name

Configuration
reference path

Bucket name

Configuration name

Persistence Strategy: AEM Page

40

Example resource structure for a nested configuration:

/conf

/mysite

/sling:configs

/x.y.z.NestedConfig [cq:Page]

/jcr:content [cq:PageContent]

@sampleParam = "abc"

/subConfig

@stringParam = "value1"

@intParam = 123

@boolParam = true

/subListConfig

/item1

@stringParam = "value1"

/item2

@stringParam = "value1"

Nested configuration
parameter name

Nested configuration
parameter name

Configuration
reference path

Bucket name

Configuration name

Persistence Strategy: Tools Config Page

41

• Stores configurations in tools/config pages
as part of the content, and not below /conf

• Advantages:

– Configuration can be packaged or replicated easily together with content

– Configuration can be activated, versioned etc. directly from Author GUI

– Same concept as in wcm.io Configuration 0.x

• Disadvantages:

– Configuration cannot be easily protected via ACLs

– Not following best-practices (mixes content and configuration)

• Disabled by default, can be enabled via OSGi configuration

• For detailed setup instructions see wcm.io documentation

https://wcm.io/caconfig/extensions/persistence-strategies.html#Persistence_Strategy_Tools_Config_Page

Override Provider: Request Header

42

• Injects configuration overrides from HTTP headers incoming HTTP requests.

• This is useful on QA instances with automated tests which expect a certain
context-aware configuration.

– It should never be activated on production instances.

• Via the “Header Name” configuration property the name of the header is
defined. The header can be included multiple times in the request, each
containing an configuration override string.

• This provider is deactivated by default.

Reference Provider

43

• The ReferenceProvider is an AEM service interface to report reference to AEM
pages (e.g. AEM assets referenced by a page). wcm.io CAConfig
Configuration Extensions provides an implementation for configuration
pages below /conf.

• If you use the “AEM Page” persistence strategy the configuration is stored as
AEM pages below /conf. If they are outdated they are offered for publication
when you activate a page of a related configuration context:

• Enabled by default, can be disabled by configuration.

Unit Test Support

44

Unit Tests with Context-Aware Configuration

45

• When your code depends on wcm.io Context-Aware Configuration
Extensions and you want to write AEM Mocks-based unit tests running
against the Context-Aware configuration implementation you have to
register the proper OSGi services to use them.

• To make this easier, a
“wcm.io Context-Aware Configuration Mock Helper“
is provided which does this job for you.

<dependency>

<groupId>io.wcm</groupId>

<artifactId>io.wcm.testing.wcm-io-mock.caconfig</artifactId>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.apache.sling</groupId>

<artifactId>org.apache.sling.testing.caconfig-mock-plugin</artifactId>

<scope>test</scope>

</dependency> You need both plugins –
from Sling and wcm.io.

Unit test example

46

import static io.wcm.testing.mock.wcmio.caconfig.ContextPlugins.WCMIO_CACONFIG;

import static org.apache.sling.testing.mock.caconfig.ContextPlugins.CACONFIG;

public class MyTest {

@Rule

public AemContext context = new AemContextBuilder()

.plugin(CACONFIG)

.plugin(WCMIO_CACONFIG)

.build();

@Before

public void setUp() {

// register configuration annotation class

MockContextAwareConfig.registerAnnotationPackages(context, "com.myapp.config");

// shortcut for registering a context path strategy for unit test

MockCAConfig.contextPathStrategyRootTemplate(context, "/apps/myapp/templates/home");

}

...

}

This plugs in the necessary
Context-Aware configuration

setup/teardown methods.

Helper method for quickly
setting up a context path

strategy.

Recommendations for AEM projects

47

Recommendations for AEM projects

48

• Use wcm.io Context-Aware Configuration Editor

– Otherwise, you can edit the configuration only via CRX DE Lite

– Define your own template definition to control where it can be created

– Disable it on publish via OSGi configuration

• Use wcm.io Context-Aware Configuration Extensions

– Use “Root Template” or “Absolute Parent” context path strategy

– Use “AEM Page” persistence strategy

• Apply metadata (labels, descriptions) to your configuration classes

– It’s helpful for the user when using the configuration editor

ACLs

49

By default, most users have no read access to /conf. When you store context-
aware configurations in this folder you need to setup proper ACLs on author
and publish side.

• Be as explicit as possible and grant ACLs only the required subtrees of
/conf, and only to the required groups

• On the author side:

– all author users should have jcr:read access to subtree.
Users allowed to change and publish configurations need:
jcr:versionManagement, crx:replicate, rep:write, jcr:lockManagement

– Access rights for version-manager-service:
jcr:versionManagement, rep:write

• On the publish side the everyone user needs jcr:read access.

