
General concepts and usage

CONGA Overview

Last Updated: December 2021

DATM-57

Technical Training – wcm.io DevOps

https://training.wcm.io/conga/©2017-2021 diva-e

https://training.wcm.io/conga/

About CONGA

2

CONfiguration GenerAtor

Yet Another Configuration Generator?

3

• A lot of configuration generator tools already exist

• IT Automation Tools like Ansible, Puppet, Chef have their own concepts and
tools for generating configuration files from templates

• But: None of them knows the specialties of AEM, Sling and OSGi

• It’s quite hard to generate AEM-specific configuration with them because the
target is not a simple text-based format

• We want a tool that is well-integrated with Maven and typical Java CI/CD
infrastructures

CONGA targets system configuration

4

• CONGA focuses on System Configuration that is usually defined at
deployment time and is static at runtime.

– It is not targeted to “runtime configuration” like site configuration, tenant
configuration that can be changed at any time by authorized users

• CONGA is not a deployment automation tool – it focuses only on
configuration generation.

– can be integrated in an automated deployment process

– or used for manual or simple script-based deployment

CONGA is flexible

5

• CONGA is not limited to a specific type of application or runtime
environment, any system that relies on system configuration stored
somewhere can be provisioned with this tool.

– Typical target systems we had in mind when designing the tool are:
AEM, AEM Dispatcher, Apache Tomcat and Apache HTTPd

• It generates files of any type, e.g.

– Plain text files like Properties, Scripts, Webserver configuration

– JSON files

– XML files

– OSGi configuration snippets

– Sling Provisioning Model

– AEM Content Packages containing OSGi configurations

CONGA technology stack

6

• Runs with Java 8 and up

• Maven Plugin (standalone CLI available as well)

• Handlebars templating

• YAML files for role and environment definitions

• CONGA has a modular and plugin-based architecture

• Knowledge of new config formats can easily be added

• Generic formats like JSON and XML are supported out-of-the-box

• Plugins for Sling, AEM and Ansible are provided

• Designed with security in mind – protect sensitive data like passwords and
private keys

CONGA is Open Source

7

• Apache 2.0 License

• Sources on Github:
https://github.com/wcm-io-devops/conga

• Documentation:
https://devops.wcm.io/conga/

• First published in 2015

• Regular releases

• Maintained by diva-e
https://diva-e.com

https://github.com/wcm-io-devops/conga
https://devops.wcm.io/conga/
https://diva-e.com/

General Concepts

8

Terminology and concepts

Built for DevOps

9

• CONGA separates the templates for the generated files from the actual
configuration values needed for each environment

• For each target environment only a “high-level” parameter file needs to be
maintained

• CONGA generates the complete configuration from them

• Ideal for integrated DevOps teams, but it also provides a good level of
separation of concerns if Dev and Op-Teams are organized separate

10

Configuration meta model

Configuration definitions
Maintained by Developers

Environments
Maintained by Operations

Role
definitions

Environment
definitions

File templates

Configuration definitions
Maintained by Developers

Environments
Maintained by Operations

11

Configuration definition model

Node roles

File templates

Environments

Tenant roles

Variants

Configuration
parameters

Files

Nodes

Tenants

Configuration
values

12

Generated configuration example

Environment

QS
Config. Definitions

Role
definitions

File
templates

Environment

PROD

QS Configuration

ApacheApache

Tomcat

AEMAEM

Tomcat

PROD Configuration

Apache

Apache

AEM

Tomcat

AEMAEM

Tomcat

Apache
ApacheApache

AEMAEM

Tomcat
Tomcat

+

+ =

=

Environments

13

• Environment: Environment for a specific project or group of projects with a
set of nodes that work together, e.g. “QS”, “Prelive”, “Prod”

• Node: A system to deploy to, e.g. a physical machine, virtual machine,
Docker container or any other deployment target.

– For each node multiple roles can be assigned

– For each role one or multiple variants

• Tenant: List of tenants in the environment and their configuration

– For each tenant multiple tenant roles can be assigned

• Configuration value: Configuration value for a configuration parameter in
context of environments, nodes, roles and tenants.

Configuration definitions

14

• Node role: A set of functionality/application part that can be deployed to a
node/machine, e.g. “AEM CMS”, “AEM Dispatcher”, “Tomcat Service Layer”

– Variant: Variants of a role with same deployment artifacts but different
configuration; e.g. “Author”, “Publish”, “Importer”.

– Configuration parameter: Definition of configuration parameters that can be set
for each environment. The configuration parameter values are merged with the file
templates when generating the configuration.

– File: Defines file to be generated for Role/Variant based on a File Template

• Tenant role: Allows to define features required for a tenant, e.g. Tenant
Website with or without additional applications

• File template: Script-based template the contains static configuration parts
and placeholders for the configuration parameter values

Multitenancy

15

• Often a single infrastructure environment is used to host applications and
websites for multiple tenants (e.g. for multiple markets or different brands)

• Most of this multi-tenancy aspects are managed outside the system
configuration (e.g. in content hierarchy and content pages, context-aware
configuration in repository)

• But in some occasions the system configuration is affected as well, e.g.
– One vhost file for each tenant’s website in the webserver configuration

– Short URL Mapping in Dispatcher and AEM for each website

• To support this tenants may be defined in each environment, and it is possible
to override some of the configuration parameters with tenant-specific values

• Using the “Tenant Multiply” plugin it is possible to generate multiple
configuration files (one per tenant) based on a single file template.

• Tenants are independent from roles and role variants from the configuration
definition. Tenant roles are specific to tenants and allow to express different
characteristics of tenants e.g. with or without a specific feature-set.

File headers

16

• CONGA automatically adds a file header to each file/artifact it generates to
notice that it is automatically generated.

• Additionally the header contains information which environment, role,
variant and versions were used to generate this file.

• CONGA detects the file format automatically and applies the appropriate
comment syntax.

Example:
**

This file is AUTO-GENERATED by CONGA. Please do no change it manually.

Version 1-SNAPSHOT

Environment: prod

Role: tomcat-services

Variant: importer

Template: setenv.sh.hbs

Dependencies:

io.wcm.devops.conga/io.wcm.devops.conga.example.definitions/1-SNAPSHOT

**

How to run CONGA

17

CONGA tooling

Run CONGA

18

• You have two alternatives to run CONGA

– Via Maven (recommended)

– Directly from the command line (via CLI)

• When executing via Maven you have more features like

– Building maven artifacts with CONGA definitions

– Use Maven versioning for configuration management

– Use Maven repositories to distribute configuration definitions

Run CONGA via Maven

19

The CONGA plugin hooks into the Maven lifecycle:

• mvn validate

– Validate definition files for syntax errors

• mvn generate-resources

– Generate configurations

• mvn package

– Package definitions or generated configurations as ZIP file

• mvn install

– Install definitions or generated configurations in local Maven repository

Configure CONGA in your pom.xml

20

• Define the CONGA Maven Plugin
<build>

<plugins>

<plugin>

<groupId>io.wcm.devops.conga</groupId>

<artifactId>conga-maven-plugin</artifactId>

<extensions>true</extensions>

</plugin>

</plugins>

</build>

• Create a dedicated Maven module for your configuration definitions

– With <packaging>config-definition</packaging>

– This module is usually part of your application’s Maven POM hierarchy

• And a separate Maven project for your environments

– With <packaging>config</packaging>

– This is usually not part of your application

Maven project folder structure

21

Folder conventions used by CONGA:

Configuration definitions

• src/main/roles

• Role definitions with available configuration parameters

• src/main/templates

• Handlebars templates for generating files

Environments

• src/main/environments

• Environment files with nodes, role references and configuration parameters

• target

• Configuration is generated to the target folder

Exercise

22

Execute exercise

DATM-59-01 See CONGA in action

• Execute CONGA via Maven

• Have a first look at the role definitions, templates and environments

• Inspect the generated configuration

https://training.wcm.io/conga/DATM-59-01-See-CONGA-in-action.html

YAML syntax

23

Short introduction of YAML syntax

About YAML syntax

24

• CONGA uses YAML 1.1 syntax for role and environment definition metadata.

• Here is a good introduction of YAML syntax basics:
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

• Normally you do not need to quote strings, even if they contain special chars
like spaces.

– If you want to quote them, use single quotes ' for a 1:1 representation of the
string, or double quotes " if you want to interpret control chars like \n.

• Never use tabs in YAML files.

– Configure your text editor to always insert spaces instead of tabs (not only for
YAML files)

– Use default tab width of 2 characters

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

CONGA Environments

25

Configure nodes, tenants and parameters

CONGA Environment

26

A CONGA environment consists of

• List of nodes (target machines)

• List of roles for each node (= what is installed on each node)

• Role-specific global configuration (optional)

• Global configuration (optional)

• Tenant definitions (optional)

An environment is described using a YAML file.

Full documentation in JavaDocs:
https://devops.wcm.io/conga/generator/apidocs/io/wcm/devops/conga/model/environment/Environment.html

https://devops.wcm.io/conga/generator/apidocs/io/wcm/devops/conga/model/environment/Environment.html

Define nodes

27

• Defines two nodes with one role each without further configuration

• Node name is either a symbolic name, or a real host name

• Role and variant names are defined in the configuration definition

Defines an environment

nodes:

Example node with 1 role

- node: services-2

roles:

- role: tomcat-services

variants:

- services

Example node with 1 role

- node: webserver

roles:

- role: webserver

Generate configuration for role tomcat-services
But only files assigned to variant services

Define nodes

28

• Defines one nodes with two roles and config parameters

Example node with 2 roles

- node: services-1

Config for all roles in this node

config:

jvm.heapspace.max: 2048m

topologyConnectorPath: /specialConnector

roles:

- role: tomcat-services

Variants allow to pick a specific sub-configuration of a role

variants:

- importer

Config only for this role

config:

topologyConnectors:

Merge with list defined already for this parameter

- _merge_

- http://host3${topologyConnectorPath}

- role: tomcat-backendconnector

Global configuration

29

• Configuration parameters can be defined globally for all nodes and roles

Global configuration

config:

It is possible to use a shortcut definition for nested maps.

jvm.heapspace.max: 4096m

is equivalent to

jvm:

heapspace:

max: 4096m

jvm.heapspace.max: 4096m

Configuration entries can be used as variables for other entries

topologyConnectorPath: /connector

topologyConnectors:

- http://host1${topologyConnectorPath}

- http://host2${topologyConnectorPath}

Role-specific global configuration

30

• Configuration parameters can be defined globally for roles (on any node)

Role-specific global configuration

roleConfig:

- role: role1

config:

var1: v1

Tenant definitions

31

• You can specify a list of tenants used for the configuration generation

• Example: One vhost file for each tenant in the httpd configuration

tenants:

Tenant with two tenant roles (can be used for filtering file multiply)

- tenant: tenant1

roles:

- website

- application

config:

domain: mysite.de

website.hostname: www.${domain}

Tenant with one tenant role

- tenant: tenant2

roles:

- website

config:

domain: mysite.fr

website.hostname: www.${domain}

Flexible config map definition

32

• For nested maps a short notation is supported by using a “.” notation.

• Both examples express the same configuration

config:

param1: value1

group1:

param11: 5

param12: true

list1:

- listValue1

- listValue2

config:

param1: value1

group1.param11: 5

group1.param12: true

list1:

- listValue1

- listValue2

Configuration definitions

Environments

Configuration parameter inheritance

33

• Configuration parameter maps are inherited to “deeper levels” within the
YAML structure, and the maps are merged on each level.

• The configuration parameters on the “deeper levels” overwrite the
parameters from the higher level - inheritance order:

1. Global configuration parameters from role definition

2. Configuration from role variant definition
– If multiple variants are assigned to a node/role their configs are merged, first variants have higher precedence

3. Global configuration from environment

4. Node configuration from environment

5. Global role configuration from environment

6. Role configuration from node

7. Variant configuration from node

8. Configuration from multiply plugins, e.g. the tenant-specific configuration

• Special support for list parameters: If you insert the keyword _merge_ as list
item on either of the list values, they are merged and the special keyword
entry is removed.

Default context properties

34

• A set of default context properties are defined automatically by CONGA and
merged with the parameter maps. Examples:

Property Description

version Environment version

nodeRole Current node role name

nodeRoleVariant Current node role variant name (only set if the role has exactly one variant)

nodeRoleVariants List of current node role variant names

environment Environment name

node Current node name

tenant Current tenant name. This is only set if the tenant multiple plugin is used.

• The full list can be found at
https://devops.wcm.io/conga/yaml-definitions.html#Default_context_properties

https://devops.wcm.io/conga/yaml-definitions.html#Default_context_properties

Variable References

35

Reference configuration parameters

Variable references

36

Reference config parameter values with this “variable” syntax:

Resolving a variable fails when it is not set – unless you specify a default value:

${myvariable}

${mygroup.myvariable}

${myvariable:defaultValue}

${myvariable:defaultListItem1,item2,item3}

Variables from external sources

37

You can also reference values from external sources (provided via plugins), e.g.
from Java System Parameters:

Available Value Provider plugins:

Please note: references to value providers must not be used in role definitions.

${system::my.system.parameter}

${system::my.system.parameter:defaultValue}

Plugin name Description

system
Allows to reference Java system properties in variable definitions, e.g.
${system::mysystemparam}

maven
Allows to reference Maven properties in variable definitions, e.g.
${maven::my.maven.param}

Java Expression Language

38

You can use Java Expression Language (JEXL). Examples:

Please Note: JEXL cannot be combined with value provider expressions or
default values.

${myvariable1 + '/' + myvariable2}

${mygroup.myvariable == 'expected_value'}

${mynumber + 1}

${new('java.text.DecimalFormat','000').format(multiplyIndex)}

${stringUtils:join(listParam,'|')}

Shortcut for Commons Lang3 StringUtils class.

https://commons.apache.org/proper/commons-jexl/

Exercise

39

Execute exercise

DATM-59-02 Configure CONGA environments

• Create a new environment

• Define multiple nodes

• Change configuration parameters

https://training.wcm.io/conga/DATM-59-02-Configure-CONGA-environments.html

CONGA Roles

40

Define roles and templates

CONGA Role

41

A CONGA role definition consists of

• List of variants supported by the role (optional)

• Directory where the template files are stored

• List of files to be generated

• Definition of configuration parameters with default values

A role is described using a YAML file.

Full documentation in JavaDocs:
https://devops.wcm.io/conga/generator/apidocs/io/wcm/devops/conga/model/role/Role.html

https://devops.wcm.io/conga/generator/apidocs/io/wcm/devops/conga/model/role/Role.html

Define variants and template root path

42

• A role can define variants that are supported

• Switching between different variants in the environment may

– activate/deactivate individual files the role

– or affect conditions in the templates that generate the files

• The template path is always relative to the src/main/templates folder

Variants supported by this role

variants:

- variant: services

- variant: importer

Relative path to lookup the template files

templateDir: tomcat

Define variants
supported by this role

Configuration parameters with default values

43

• Defines all configuration parameters (with default values) used by the role

• This acts also as “parameter documentation” for users of the role

– Optional parameters should be documented as well (commented out)

Defines configuration parameters and default values

config:

tomcat:

path: /path/to/tomcat

jvm:

path: /path/to/java

heapspace:

min: 512m

max: 2048m

permgenspace:

max: 256m

topologyConnectors:

- http://localhost:8080/libs/sling/topology/connector

Optional - enable debug mode

#debug: true

“Flexible config map definition” rules and
support for variable placeholders apply here
as well

File generation

44

• Mandatory parameters for each generated file:

– file: Destination file name

– dir: Relative path for destination directory

– template: Handlebar template name

• Optional parameters:

– variants: Generate the file only for a given list of role variants

– charset: Define file encoding (default: UTF-8)

– condition: Condition whether the file should be generated

• The condition is a single variable placeholder

• The condition is true if the resulting string of the variable is not empty and does
not match "false".

– lineEndings: Define line endings – unix (default), windows or macos

Plugins for file generation

45

• Optionally you can control which plugins should be applied:

– validators: Validates the syntax of the generated file.

• If not set, a plugin that accepts the file extension is chosen automatically.

– validatorOptions: Options for the validator plugins

– postProcessors: Post-process files (e.g. transform in different format)

– postProcessorOptions: Options for post processor plugins

– fileHeader: Adds a file header to the generated file

• If not set, a plugin that accepts the file extension is chosen automatically.

– escapingStrategy: Rules for escaping the inserted values

• If not set, a plugin that accepts the file extension is chosen automatically.

– multiply: Generate multiple files instead of one single file

– multiplyOptions: Options for multiply plugins

Generate single file

46

• Generating single files

Define a single file to be generated for all role variants

- file: setenv.sh

dir: bin

template: setenv.sh.hbs

Default charset is UTF-8 unless specified otherwise

charset: ISO-8859-1

Define a single file to be generated for role variant 'services'

- file: ROOT.xml

variants:

- services

dir: conf/Catalina/localhost

template: ROOT.xml.hbs

Allows to define special validators.

If missing the best-match validator is picked automatically.

validators:

- xml

Generate file for selected variants

47

• Files can be generated depending on variants given for a node/role
combination in the environment definition

To generate a file when any of the given variants is defined (OR):

To generate a file when all of the given variants is defined (AND):

- file: file1.xml

variants:

- variant1

- variant2

template: file1.xml.hbs

- file: file2.xml

variants:

- variant1*

- variant2*

template: file2.xml.hbs

File is generated when “variant1” or
“variant2” or both are given

File is generated only when both
“variant1” and “variant2” are given

Generate multiple files

48

• Generate multiple files with the sample template

• E.g. one file for each tenant (different multiply plugins may exist)

Define a file to be generated per tenant

- file: "${tenant}_vhost.conf"

dir: vhosts

template: tenant_vhost.conf.hbs

Multiply file for each tenant that has the given roles

multiply: tenant

multiplyOptions:

roles:

- website

Download/Copy files

49

• As an alternative to generating the files it is possible to download and copy
files into the target directory.

• They are not generated via handlebars, but may be post-processed as well.

Copy file from classpath

- file: mysample.txt

dir: download

url: classpath:/sample.txt

modelOptions:

customOption1: value1

customOption2: 123

Download file from maven repository, use artifact filename.

Derive version from maven project dependency.

- url: mvn:x.y.myapp/x.y.myapp.complete-package//zip

dir: packages

Please note: In case of Maven artifact references CONGA creates symlinks in the target folder if the
filesystem permits this.

Sources for download/copy files

50

• The following URL prefixes are supported out of the box:

– file: – Absolute filesystem path

– classpath: – Classpath resource reference

– http:// or https:// – External URL

– mvn: – Maven Artifact coordinates

• (only supported when CONGA runs inside Maven)

• Maven Coordinates Syntax 1 (Maven-style):
groupId:artifactId[:packaging][:classifier]:version

• Maven Coordinates Syntax 2 (Pax URL-style):
groupId/artifactId/version[/type][/classifier]

• classifier and type are optional

• if the version is empty in the role file it is resolved from the Maven project

• If no prefix is specified the URL is interpreted as relative path in the local
filesystem.

https://maven.apache.org/pom.html#Maven_Coordinates
https://ops4j1.jira.com/wiki/x/CoA6

Generate symlink

51

• It’s also possible to generate a symlink with CONGA

Generate vhost file

- file: vhost.conf

dir: available_vhosts

template: vhost.conf.hbs

Symlink pointing to a generated file

- file: vhost.conf

dir: enabled_vhosts

symlinkTarget: "available_vhosts/vhost.conf"

Role Inheritance

52

• A role can inherit from one or multiple other roles

– The current role inherits all configuration and files from the super role(s).

– Configuration maps are merged, the config of the current role has higher
precedence.

– If the super role defines variants, the current has to define the same variants as
well.

– Files in the current role with the same target file name as a file in a super role have
higher precedence than the files from the super role.

Inherit from roles

inherits:

- role: superRole1

- role: superRole2

Defines super role(s)
to inherit from.

Handlebars quickstart

53

Template language for CONGA

About Handlebars

54
https://handlebarsjs.com/ https://jknack.github.io/handlebars.java/

https://handlebarsjs.com/
https://jknack.github.io/handlebars.java/

About handlebars

55

• CONGA uses handlebars (Java) as template engine for file generation

• All handlebar language features can be used

• CONGA adds some additional expressions

• You can add your own expressions as well (via CONGA plugins)

Handlebars basics: Variable references

56

To insert a variable from configuration parameter maps with escaping
(escaping strategy depending on file type):

{{group1.param1}}

To insert a variable without escaping (you have to take care of generating a
valid file yourself):

{{{group1.param1}}}

Handlebars basics: Conditions

57

To conditionally generate a block:

{{#if group1.flag1}}

condition met block...

{{/if}}

Optionally you can define an else block:

{{#if group1.flag1}}

condition met block...

{{else}}

condition not met block...

{{/if}}

Handlebars basics: For each loop

58

To loop about a list of values:

{{#each group1.list}}

{{this.param1}}

{{/each}}

If you want to add a separator between each item but not after the last:

{{#each group1.list}}

"{{this.param1}}"{{#unless @last}},{{/unless}}

{{/each}}

To insert the list index for each item:

{{#each group1.list}}

"prop{{@index}}": "{{this.param1}}",

{{/each}}

Handlebars basics: Whitespace handling

59

You can control whitespace handling around handlebar expressions by
inserting ~ at the beginning or end of the handlebars expression. On the side of
this expression all whitespaces are removed up to the next handlebars
expression or non-white space content.

Example: Remove all whitespaces inside the expression:

{{#if group1.flag1 ~}}

conditional block...

{{~/if}}

Example: Remove all whitespaces around the expression:

{{~#if group1.flag1}}

conditional block...

{{/if ~}}

Handlebars basics: Partials and blocks

60

If you want to modularize your templates and reuse a shared set of content or
expressions in multiple templates you can use partials and blocks.

Example of a file with shared content/expressions using blocks:

{{#block "serverName"}}

ServerName {{group1.serverName}}

{{/block}}

{{#block "documentRoot"}}

DocumentRoot "{{group1.rootPath}}"

{{/block}}

Handlebars basics: Partials and blocks

61

You can include this file in another and overwrite parts from the shared file by
overwriting single blocks with a partial:

... main template start

{{#partial "serverName"}}

ServerName {{group1.otherServerName}}

ServerAlias {{group1.aliasName}}

{{/partial}}

{{> role1/mypartialtemplate.conf.hbs}}

... main template end

Handlebars basics: Comments

62

To include a comment that is stripped from the generated file:

{{!-- my comment --}}

CONGA Custom Handlebars expressions

63

• regexQuote – To insert a variable expression and applying regex quoting

• join – To join a list of values with a separator character

• replace – Replace some characters in a string

• ifEquals – Conditional if statement with separate argument

• ifNotEquals – Conditional if not statement with separate argument

• defaultIfEmpty – Inserts default value if expression not set

• eachIf – Conditional for each loop

• eachIfEquals – Conditional for each loop with separate argument

• contains – Checks for presence of a given value in a list

• ensureProperties – Ensure that mandatory properties are set

The CONGA-specific expressions are documented here:
https://devops.wcm.io/conga/handlebars-helpers.html

https://devops.wcm.io/conga/handlebars-helpers.html

CONGA Custom Handlebars expressions

64

Additionally, CONGA provides access to a set of custom Handlebars
expressions provided by the handlebars.java project:

• StringHelpers

– e.g. upper, lower, substring, numberFormat

• ConditionalHelpers

– e.g. eq, neq, and, or

• AssignHelper

– Allows to assign variables

https://javadoc.io/doc/com.github.jknack/handlebars/latest/com/github/jknack/handlebars/helper/StringHelpers.html
https://javadoc.io/doc/com.github.jknack/handlebars/latest/com/github/jknack/handlebars/helper/ConditionalHelpers.html
https://javadoc.io/doc/com.github.jknack/handlebars-helpers/latest/com/github/jknack/handlebars/helper/AssignHelper.html

Mandatory properties

65

Your role may require mandatory properties that the user has to specify in the
environment, otherwise the configuration build should fail.

In CONGA, this is controlled by using the ensureProperties expression the
templates.

Example:

{{ensureProperties

"httpd.serverNameSsl"

"httpd.ssl.certificateKeyFile"

~}}

The expression can also be used in conditional blocks – making properties mandatory
only when a certain condition is met.

Build fails if any of these
properties are not set.

CONGA Extensibility model

66

Plugin Architecture

CONGA Extensibility model

67

• The CONGA architecture is very modular

• Most functionality provided by CONGA itself is implemented by plugins
shipped with CONGA

• More functionality is provided by plugins e.g. for Sling and AEM

• You can easily write your own CONGA plugins to add support for new file
formats or other special features

Conga SPI

68

CONGA allows to provide custom plugins that are applied on generated files:

• File Header Plugin: Adds a file header to each generated file. *)

• Validator Plugin: Validate file syntax after generation. *)

• Handlebars Escaping Strategy Plugin: How to escape special characters in
the generated file. *)

• Post Processor Plugin: Plugin that operates on a generated file, e.g. to
convert it to a binary file.

*) These plugins detect files with certain extensions, and are executed
automatically on them.

Conga SPI

69

Other plugins (selection):

• Multiply Plugin: Generate multiple files with a single template.

• Value Provider Plugin: Allows to provide values form external sources, which
can be referenced like variables.

• Value Encryption Plugin: Encrypts a sensitive configuration parameter value
e.g. for YAML model file export.

• Node Model Export Plugin: Export “model data” for IT automation tools.

• URL File Plugin: Define new sources to download/copy files from.

• Handlebars Helper Plugin: Define your own handlebar expressions.

For a list of all built-in plugins see:
https://devops.wcm.io/conga/extensibility.html
https://devops.wcm.io/conga/plugins/sling/extensions.html
https://devops.wcm.io/conga/plugins/aem/extensions.html
https://devops.wcm.io/conga/plugins/ansible/extensions.html

https://devops.wcm.io/conga/extensibility.html
https://devops.wcm.io/conga/plugins/sling/extensions.html
https://devops.wcm.io/conga/plugins/aem/extensions.html
https://devops.wcm.io/conga/plugins/ansible/extensions.html

Advanced Maven Topics

70

Use CONGA and Maven effectively

Configure the CONGA Maven plugin

71

You can configure:

• the paths to look up roles, templates and environments

• whether to generate configuration for all or only for a single environment

• whether to create a single ZIP file for all environments, or one for each

• whether to export model data (model.yaml) per node or not

Full documentation of the CONGA Maven plugin:
https://devops.wcm.io/conga/tooling/conga-maven-plugin/plugin-info.html

https://devops.wcm.io/conga/tooling/conga-maven-plugin/plugin-info.html

Combine multiple configuration definitions

72

• You are not limited to use only one single artifact which contains the CONGA
configuration definitions (roles, templates)

• You can reference multiple of them in your environment POM and use and
mix the roles as required

– You will see examples of this in the next training
“PVTRAIN-146 AEM Configuration with CONGA”

• You can also overlay templates files from referenced artifacts with modified
versions from your own

– In this case the dependency order in the Maven projects controls which file is
loaded from the classpath if multiple exists with the same name

– You should only overlay files this way if the file from the original role is designed for
this, e.g. by using Handlebars partials and blocks

Deploy CONGA Maven artifacts

73

• Usually only the CONGA configuration definition artifacts are deployed to a
central maven repository.

• The environments are kept in a source code management repository as well,
but neither the environment definitions nor the generated configuration
should be uploaded to a maven repository because they may contain
sensitive data (e.g. passwords).

• The configuration definition is released and versioned together with the
application. Thus it is possible to rollback to a previous version of the
application together with the matching configuration definition, but still
using the latest environment parameter values.

• The version of application (and configuration definition) that should be
deployed is configured in the POM of the environment definition.

Exercise

74

Execute exercise

DATM-59-03 Define CONGA Roles and Templates

• Update roles and introduce variants

• Change templates

• Create new parameters

• Define tenants

https://training.wcm.io/conga/DATM-59-03-Define-CONGA-Roles-and-Templates.html

