
Configuration Management for AEM environments

AEM Configuration with CONGA

Last Updated: December 2021

DATM-58

Technical Training – wcm.io DevOps

https://training.wcm.io/conga/©2017-2021 diva-e

https://training.wcm.io/conga/


Challenges of AEM Configuration

2

System configuration for OSGi, Apache Sling and AEM



Apache Sling and OSGi system configuration

3

• Sling Provisioning File Format *)

– A lot of Apache Sling tooling makes use of this, e.g. Slingstart Maven Plugin

– Adobe also uses this format internally for building the AEM Quickstart JAR

– Text-based format inspired by YAML, but with proprietary syntax

– Can contain definitions for bundles and versions, configurations, run modes and 
special features like repository initialization

• OSGi configurations – Apache Felix Config Admin File Format

– In Apache Sling OSGi configurations can be provided via filesystem folder or 
repository

– Uses a configuration file format syntax defined by the Apache Felix project

– Has some very special escaping rules which need to be respected

– The syntax is also used inside the Sling Provisioning files for configurations

*) A switch to the new „Feature Model“ file format is currently on the way in Sling/AEM



AEM system configuration

4

• AEM Content Package

– AEM Content Packages are ZIP files containing repository content in FileVault XML 
format

– Content Packages are used to deploy configurations or content to AEM instances

– Some configurations target OSGi services and use the Felix Config Admin file 
format, others are content structures with nodes and properties

– Content Packages have additional metadata which may define filtering rules, 
handling of ACLs in content structures, requirements for restart etc.

• Dispatcher ANY file format

– The Dispatcher webserver modules is configured via it’s own “ANY” file format

– This format has a very special syntax something between XML and JSON



CONGA Plugins and definitions

5

• Due to the modular architecture of CONGA it is easy to add support for 
managing these special file formats unique to Sling and AEM

• Two plugin artifacts are provided, each contains a set of technical plugins 
based on the CONGA extensibility interface (file headers, validators, 
escaping, post processors)

– CONGA Sling Plugin

– CONGA AEM Plugin

• Additionally a generic set of “AEM configuration definitions” is provided 
which implements best practices for configuring AEM environments

– CONGA AEM Definitions

• Both plugins and definitions can be added to the CONGA build by simply 
adding them as dependencies in the POM to the CONGA Maven Plugin



CONGA Sling Plugin

6

Manage OSGi configuration for Sling and AEM applications



CONGA Sling plugin

7

Extends CONGA with:

• Manage OSGi configuration templates in Apache Sling Provisioning file 
format

• Generate OSGi configurations in Apache Felix Config Admin file format

Documentation:
https://devops.wcm.io/conga/plugins/sling/

https://devops.wcm.io/conga/plugins/sling/


OSGi configurations

8

• CONGA Sling plugin provides a File Header and Escaping plugin for OSGi 
configuration files using the Apache Felix Config Admin file format. They are 
automatically applied.

• File extension is .config

• The format supports configuration parameter of different data types.

• Single values and array values are supported.

• The first line of such a file might start with a comment line. Besides this 
inline comments are not allowed.

• Detailed description of the format:
https://sling.apache.org/documentation/development/slingstart.html#default-configuration-format

https://sling.apache.org/documentation/development/slingstart.html#default-configuration-format


OSGi configurations – example

9

.config file example:

# Single Line Comment

stringParam="Hello\ World"

stringArrayParam=["Hello","World"]

intParam=I"123"

intArrayParam=I["123","456"]

longParam=L"123456"

doubleParam=D"1.23"

booleanParam=B"true"

Supported data types:

• 'I' : Integer

• 'L' : Long

• 'F' : Float

• 'D' : Double

• 'X' : Byte

• 'S' : Short

• 'C' : Character

• 'B' : Boolean

• The name of the config file is the OSGi PID

• Escaping with “\” required for: Quotes, double quotes, backslash, 
equals sign, space character



OSGi configurations – PIDs

10

• Within OSGi all singleton configurations have a unique PID

– The PID is often equal to the class name of the service implementation, but may 
also be a custom one chosen by the implementor of the service

– Example:
x.y.z.MyService

• When factory configurations are used the factory PID is used with a sub 
name separated by “-”

– Example:
x.y.z.MyServiceFactory-one

x.y.z.MyServiceFactory-two

• The PID is used a part of the file name e.g. x.y.z.MyService.config

Suffix must be unique 
in the system



Provisioning files

11

• CONGA Sling plugin provides a File Header, Validator and Escaping plugin 
for provisioning files. They are automatically applied.

• Additionally a Post Processor plugin is provided which generates a set of 
OSGi config files from a single provisioning files for all configurations 
contained.

• File extension is .provisioning or .txt

– Sling defines only “txt” as file extension. To distinguish the files without doubt 
from plain text files it is recommended to use only the “provisioning” file extension 
within CONGA.

– “txt” files are treated as provisioning files if they contain the string “[feature ” 
(heuristic)

• Detailed (although currently incomplete) description of the format:
https://sling.apache.org/documentation/development/slingstart.html#model-files

https://sling.apache.org/documentation/development/slingstart.html#model-files


Provisioning files – configuration example

12

.provisioning file example:

[feature name=my-feature]

[configurations]

# Comments are allowed

x.y.z.MyService1

stringParam="Hello\ World"

stringArrayParam=["Hello","World"]

x.y.z.MyService2

intParam=I"123"

# Configuration applies only to certain run modes

[configurations runModes=author,runmode2]

x.y.z.MyServiceFactory-one

doubleParam=D"1.23"

booleanParam=B"true"



Provisioning files – repoinit example

13

Example section in provisioning file using Sling Repository Initialization 
(repoinit) language:

[feature name=my-feature]

[configurations]

...

[:repoinit runModes=author]

# Create service user for wcm.io Media Handler

create service user wcmioDamSystemUser

set ACL on /content/dam

allow jcr:read,rep:write for wcmioDamSystemUser

end

runModes parameter is optional

This will automatically create OSGi factory configurations for the PID 
org.apache.sling.jcr.repoinit.RepositoryInitializer.

https://sling.apache.org/documentation/bundles/repository-initialization.html

https://sling.apache.org/documentation/bundles/repository-initialization.html


Provisioning files – further notes

14

• The Sling provisioning file format supports much more features – CONGA 
uses only the configuration parameters from the [configuration]
sections.

• The feature name is irrelevant for CONGA (but a name must be given to have 
a valid provisioning file).

• The configuration parameter key/value lists use the same syntax as the OSGi 
configurations of the Felix Config Admin file format.

• Within the configuration sections the PIDs or factory PID plus sub name are 
used to identify the configuration (same as the file names for .config files)

• When run modes are given the configuration is only applied to Sling/AEM 
instances running in all of the given run modes.



Provisioning files post processor

15

Example for applying the sling-provisioning-osgiconfig post processor 
within a CONGA role definition:

- file: sling-provisioning.provisioning

dir: osgi-config

template: sling-provisioning.provisioning.hbs

# Transform provisioning file to single OSGi config files

postProcessors:

- sling-provisioning-osgiconfig

Template example:

[feature name=example]

[configurations]

my.pid

heapspaceMax="{{jvm.heapspace.max}}"

[configurations runModes=mode1]

my.pid2

stringProperty="{{var1}}"

stringProperty2="{{var2}}"



CONGA AEM Plugin

16

Manage AEM content packages and AEM Dispatcher



CONGA AEM plugin

17

Extends CONGA with:

• Generate AEM content packages for OSGi configurations and from JSON 
content fragments

• Extract package properties from AEM content packages

• Manage ANY files for dispatcher configuration

And provides a CONGA AEM Maven plugin to deploy a bunch of AEM packages 
processed by CONGA to an AEM instance.

Documentation:
https://devops.wcm.io/conga/plugins/aem/

https://devops.wcm.io/conga/plugins/aem/


Generating AEM Content Packages for OSGi configs

18

• CONGA AEM plugin provides a Post Processor plugin for provisioning files 
that transforms the contained OSGi configurations to .config files and 
bundles them in an AEM content package that can be deployed to AEM.

• Usually the provisioning file was generated by a provisioning file template 
with placeholders. The generated AEM content package then contains the 
generated configuration for the environment.

• Run modes and factory configurations are supported as well.

• The metadata of the content package can be defined via post processor 
options (e.g. package group, name and filters).



Generating AEM Content Packages for OSGi configs

19

Example for applying the aem-contentpackage-osgiconfig post processor 
within a CONGA role definition:

- file: sling-provisioning.provisioning

dir: packages

template: sling-provisioning.provisioning.hbs

# Transform OSGi configs from provisoning file to AEM content package

postProcessors:

- aem-contentpackage-osgiconfig

postProcessorOptions:

contentPackage:

group: my-group

name: config-sample

description: The description of the sample package.

version: "${version}"

rootPath: /apps/sample/config

filters:

- filter: /apps/sample



AEM Content Package metadata

20

All post processors of the CONGA AEM plugin support these post processor 
options for defining the metadata of the content package:

Property Description

contentPackage.group Group name for content package

contentPackage.name Package name for content package

contentPackage.description Description for content package

contentPackage.version Version for content package

contentPackage.rootPath Root path for the content package

contentPackage.filters Contains list with filter definitions, optionally with 
include/exclude rules. If not defined a simple filter rule is 
derived from the contentPackage.rootPath
property.

contentPackage.acHandling How to apply ACLs that are contained in the content 
package. Possible values: ignore (default), overwrite, 
merge, merge_preserve, clear.

Full list of supported package properties: https://devops.wcm.io/conga/plugins/aem/extensions.html

https://devops.wcm.io/conga/plugins/aem/extensions.html


Generating AEM Content Packages from JSON

21

• CONGA AEM plugin provides a Post Processor plugin that transforms 
content structures from JSON files to AEM content packages.

• The JSON files use the same syntax which is produced by the Sling GET 
Servlet when calling a resource with .json file extension.

• The JSON files can be generated by a file templates thus can contain 
configuration parameters for the current environment.

• Use case examples:

– Generate Sling Mapping Configuration

– Create a package with system users and their ACLs on content paths

– Create some root folders with special filter rules

• Via post processor options the metadata of the content package can be 
defined (e.g. package group, name and filters).



Generating AEM Content Packages from JSON

22

Example for applying the aem-contentpackage post processor within a 
CONGA role definition:

# Root Folder

- file: pv-aem-cms-rootfolders.json

dir: packages

template: pv-aem-cms-rootfolders.json.hbs

# Transform JSON file to AEM content package

postProcessors:

- aem-contentpackage

postProcessorOptions:

contentPackage:

name: pv-aem-cms-rootfolders

packageType: content

rootPath: /content

filters:

- filter: /content/adaptto

rules:

- rule: exclude

pattern: /content/adaptto/.*

- rule: include

pattern: /content/adaptto/jcr:content

Set FileVault package type
for package validation



Generating AEM Content Packages from JSON

23

Example JSON for creating a root folder:

{
"jcr:primaryType": "sling:OrderedFolder",

"adaptto": {
"jcr:primaryType": "cq:Page",
"jcr:content": {

"jcr:primaryType": "cq:PageContent",
"jcr:title": "adaptto",
"sling:resourceType": "/apps/adaptto/components/framework/page/structureElement",
"cq:template": "/apps/adaptto/templates/framework/structureElement"

}
}

}



Adding binary files to AEM content packages

24

• It’s also possible to add additional binary files to AEM content packages 
using the CONGA AEM plugin

• The files can be static ones from classpath, URL of maven artifact, or files 
generated by CONGA

• Documentation:
https://devops.wcm.io/conga/plugins/aem/extensions.html

• Usage example for generating AC Tool files:
https://wcm-io.atlassian.net/wiki/x/AQDYEQ

https://devops.wcm.io/conga/plugins/aem/extensions.html
https://wcm-io.atlassian.net/wiki/x/AQDYEQ


Extracting AEM content package metadata

25

• CONGA AEM plugin provides a Post Processor plugin 
aem-contentpackage-properties that is automatically applied to all ZIP 
files generated or copied/downloads by CONGA that are actually AEM
content packages.

• The package properties of these content packages are extracted and stored 
in the CONGA model metadata.

• This has no effect on the generated configuration artifacts, but can be 
picked up by IT automation tools for further processing the content 
packages managed by CONGA.

– Example: From this package metadata the Ansible AEM deployment knows if the 
instance needs to be restarted after package deployment.

– See training PVTRAIN-147 AEM Deployment with Ansible and CONGA for details



AEM Dispatcher ANY files

26

• CONGA AEM plugin provides a File Header, Validator and Escaping plugin 
for ANY files. The are automatically applied.

• File extension is .any

Example ANY template:

# name of the dispatcher
/name "{{node}}"

# each farm configures a set of (loadbalanced) renders
/farms
{

# first farm entry (label is not important, just for your convenience)
/website 

{  
/cache

{
# Cache configuration
/rules

{
# List of cachable documents
}

/invalidate
{
# List of auto-invalidated documents
}

}
/retryDelay "1"
/numberOfRetries "5"
/unavailablePenalty "1"
/failover "1"
}

}



CONGA Maven AEM Plugin

27

• This is an AEM-specific CONGA plugin for Maven, not to be mixed up with the 
generic CONGA plugin for Maven which is used to generate the 
configuration.

• The CONGA AEM Maven plugin allows to deploy a bunch of AEM packages 
processed by CONGA to an AEM instance. It requires the CONGA 
configuration to be generated before, and a model.yaml needs to be 
located in each node's root folder (this is activated by default).
<plugin>

<groupId>io.wcm.devops.conga.plugins</groupId>

<artifactId>conga-aem-maven-plugin</artifactId>

<configuration>

<nodeDirectory>target/configuration/env1/node1</nodeDirectory>

<serviceURL>http://localhost:4502/crx/packmgr/service</serviceURL>

<userId>admin</userId>

<password>admin</password>

</configuration>

</plugin>

• Deploy all AEM packages processed by CONGA with:
mvn conga-aem:package-install

Uses the same “resilience” 
package upload logic as the 

wcm.io Content Package 
Maven Plugin



CONGA AEM Custom Handlebars expressions

28

Custom AEM-specific Handlebars expressions (selection):

• aemCryptoEncrypt – Encrypts a password or other secret with the AEM 
crypto AES key.

• oakPasswordHash – Generates a password hash for an Oak JCR user from a 
plain text password.

• oakAuthorizableUuid – Generates a UUID for an authorizable node by 
deriving it from the authorizable Id.

• webconsolePasswordHash – Generates a password hash for the Apache 
Felix Webconsole (felix.webconsole.password)

The full list CONGA AEM-specific expressions is documented here:

https://devops.wcm.io/conga/plugins/aem/handlebars-helpers.html

https://devops.wcm.io/conga/plugins/aem/handlebars-helpers.html


Password Encryption in AEM

29

• AEM uses a symmetric-key encryption to protected passwords stored in 
OSGi configuration and repository.

– This does not apply to the Oak repository passwords – they are stored and 
transported in packages only as hashes

• The encryption is based on a “crypto key” stored in the file system of each 
AEM instance (outside the repository)

• It is recommended that all AEM instances of one environment share the 
same crypto key.

– The wcm.io DevOps Ansible tooling takes care of this

See also AEM Documentation:
https://experienceleague.adobe.com/docs/experience-manager-65/administering/security/security-
checklist.html?lang=en#make-sure-you-properly-replicate-encryption-keys-when-needed

https://experienceleague.adobe.com/docs/experience-manager-65/administering/security/security-checklist.html?lang=en#make-sure-you-properly-replicate-encryption-keys-when-needed


Password Encryption in AEM with CONGA

30

• CONGA AEM Plugin can generate a new crypto keys when new projects are 
set up

– This is used by the Maven Archetype for AEM Configuration Management
https://wcm.io/tooling/maven/archetypes/aem-confmgmt/

• CONGA AEM Plugin can encrypt passwords during the configuration 
generation using this key.

– via Custom Handlebar expressions

– Configuration files generated with CONGA should never contain clear text 
passwords

• CONGA AEM Plugin also provides a Command Line Interface (CLI)
https://devops.wcm.io/conga/plugins/aem/crypto-cli.html

https://wcm.io/tooling/maven/archetypes/aem-confmgmt/
https://devops.wcm.io/conga/plugins/aem/crypto-cli.html


CONGA AEM Definitions

31

Predefined roles and templates for AEM best practices



CONGA AEM definitions

32

• A set of preconfigured CONGA roles and file templates for configuring an 
AEM environment using best practices

• Generates configurations for both AEM Author/Publisher and 
Webserver/Dispatcher

• Makes sure that configuration between AEM and dispatcher is always in sync 
(e.g. Sling Short URL mapping configuration)

• Usually mixed and extended with own project-specific roles

Documentation:
https://devops.wcm.io/conga/definitions/aem/

https://devops.wcm.io/conga/definitions/aem/


Role aem-cms

33

• Variants: aem-author,  aem-publish

Features:

• Sling Mapping configuration for publish instance

• AEM replication configuration between author and publish

• AEM quickstart start script with JVM and AEM startup parameters

• Configure Sling Context-Aware Configuration OSGi overrides

• Enabled DavEx for CRX DE Lite

• Set Felix OSGi Management Console authentication

• Provide AEM Crypto keys



Role aem-dispatcher

34

Variants: aem-author, aem-publish, ssl

Features:

• Generates Apache HTTPd configuration files for Dispatcher webserver

• Generates Dispatcher configuration for author and publish instances

• Best practice default filter and caching rules, can be adapted to project 
needs via configuration

• Generates vHost for each tenant on publish

• SSL, HSTS and HTTP/2 Support

• Short URL configuration with Sling Mapping

• Enables CORS (optional)

• Configuration files use partials, can be overloaded and overwritten partially

• Supports Apache httpd 2.2 and 2.4



Role aem-dispatcher-cloud

35

Variants: aem-publish

Features:

• Generates Apache HTTPd configuration files for Dispatcher webserver

• Use file system layout for Adobe Cloud Manager/AEM Cloud Service

• Best practice default filter and caching rules, can be adapted to project 
needs via configuration

• Generates vHost for each tenant on publish

• Short URL configuration with Sling Mapping

• Enables CORS (optional)

• Configuration files use partials, can be overloaded and overwritten partially



CONGA AEM definitions

36

For a detailed documentation of available parameters look into the role 
definitions and templates:

• Roles
https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/conga-aem-definitions/src/main/roles

• Templates
https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/conga-aem-definitions/src/main/templates

• Example environment using the roles and templates
https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/example/src/main/environments

https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/conga-aem-definitions/src/main/roles
https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/conga-aem-definitions/src/main/templates
https://github.com/wcm-io-devops/conga-aem-definitions/tree/develop/example/src/main/environments


Bringing it together

37

Generate configuration for the whole AEM environment



Bringing it together

38

• For AEM projects you usually use everything together:

– CONGA via CONGA Maven Plugin

– CONGA AEM Sling and AEM plugins as plugin dependencies

– CONGA AEM definitions as dependency

– Add project-specific roles and templates

– If really required: Overwrite some partials for webserver/dispatcher config

– Define the project-/customer-specific environments

• Use this CONGA configuration for

– Configuring local development AEM instances

– Deploy to test and production systems via IT automation (e.g. Ansible)

– Or just use CONGA to package all configuration artifacts in a ZIP file and send it to 
the operations team for further processing



Example POM

39

<project>

<groupId>io.wcm.devops.conga.definitions</groupId>

<artifactId>io.wcm.devops.conga.definitions.aem.example</artifactId>

<packaging>config</packaging>

<dependencies>

<dependency>

<groupId>io.wcm.devops.conga.definitions</groupId>

<artifactId>io.wcm.devops.conga.definitions.aem</artifactId>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>io.wcm.devops.conga</groupId>

<artifactId>conga-maven-plugin</artifactId>

<extensions>true</extensions>

<dependencies>

<dependency>

<groupId>io.wcm.devops.conga.plugins</groupId>

<artifactId>io.wcm.devops.conga.plugins.sling</artifactId>

</dependency>

<dependency>

<groupId>io.wcm.devops.conga.plugins</groupId>

<artifactId>io.wcm.devops.conga.plugins.aem</artifactId>

</dependency>

</dependencies>

</plugin>

</plugins>

</build>

</project>

This is already included in the 
aem-global-parent POM.



Typical Maven project structure

40

• Git project for application and configuration definitions

– Published to Maven Artefact Manager, Releases with application

myproject

|

+-- bundles

|

+-- config-definition

|

+-- content-packages

|

+-- ...

• Git project for configuration environments
– Usually not published to Maven Artefact Manager

myproject-configuration-management

|

+-- configuration

Contains configuration definitions –
CONGA roles and templates

Typically this also contains a CONGA environment 
definition for development (local AEM instance)

Contains CONGA Environments for 
different stages, e.g. QS, Prelive, Prod



Using the wcm.io Maven Archetypes

41

• Typically, you do not have to setup all this manually, but you are using the 
wcm.io Maven Archetype to set up new projects – they come preconfigured 
with CONGA support

• Maven Archetype for AEM
https://wcm.io/tooling/maven/archetypes/aem/

– Sets up a new best-practice AEM project including CONGA configuration definitions 
based on the CONGA AEM Definitions

• Maven Archetype for AEM Configuration Management
https://wcm.io/tooling/maven/archetypes/aem-confmgmt/

– Sets up a corresponding “configuration management” project containing the 
environment definitions

– Can also generate the required Ansible, Vagrant and AWS setup (via Terraform)

https://wcm.io/tooling/maven/archetypes/aem/
https://wcm.io/tooling/maven/archetypes/aem-confmgmt/


About AEM Cloud Service

42

• CONGA and the CONGA AEM Definitions are fully compatible for AEM Cloud 
Service

• Use the “aem-dispatcher-cloud” role instead of the “aem-dispatcher” role

• Make sure to separate mutable and immutable content packages

• Create service users via repoinit

Guide how to migrate CONGA-based AEM projects for AEM Cloud Service:
https://wcm-io.atlassian.net/wiki/x/AYCXX

https://wcm-io.atlassian.net/wiki/x/AYCXX


Exercise

43

Execute exercise 

DATM-59-04 Configure AEM with CONGA

• Configure AEM OSGi configuration

• Deploy additional AEM packages

• Generate configuration content packages

https://training.wcm.io/conga/DATM-59-04-Configure-AEM-with-CONGA.html

